

Regional Savings Assessment

Central African Region

LIGHTING

Lighting

Residential Refrigerators

COOLING

Commercial **Refrigeration Conditioners**

Room Air

EQUIPMENT

Distribution **Transformers**

INTRODUCTION

This Regional Savings Assessment report provides a summary of the benefits attained from improved energy efficiency and climate friendly lighting, cooling appliances, and equipment for the Central African Region. A market transformation can be obtained through measures such as Minimum Energy Performance Standards (MEPS); product labelling; market monitoring and verification; and financial incentives. For each product, the analysis considers three different scenarios:

- Business As Usual: Assumes that no actions are introduced and that the efficiency of products in the market continues to develop in line with historical trends in the absence of regulation.
- Minimum Ambition: In which MEPS are introduced in line with the basic requirements of the United Nations Environment Programme (UNEP) United for Efficiency (U4E) Model Regulation Guidelines.
- High Ambition: In which more stringent MEPS are implemented in line with the highest levels proposed in the guidelines.

This analysis covers the following countries: Burundi, Cameroon, Central African Republic, Chad, Republic of Congo, Democratic Republic of Congo, Equatorial Guinea, Gabonese Republic, São Tomé and Príncipe. Individual country overview reports for lighting, cooling and equipment can be found on the UNEP U4E website.

CONTENTS

Page 1	Introduction
Page 2	Overview of benefits
Page 3	The potential for more benefits
Page 4	Detailed benefits by country
Page 5	Detailed benefits by product
Page 6	Input assumptions for each product
Page 7	Country data and methodology

¹ The assumptions for each of these scenarios in each country are detailed on p6 of this report.

OVERVIEW OF BENEFITS

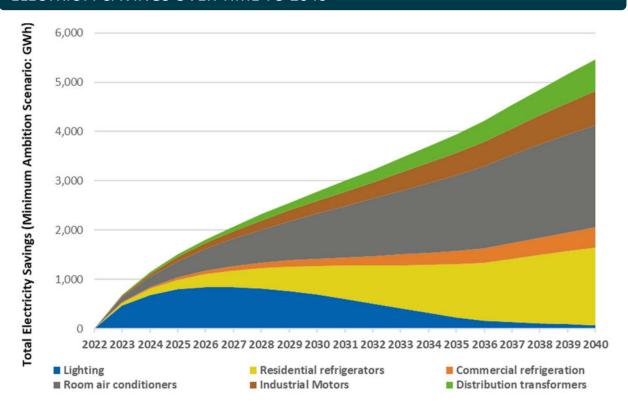
ANNUAL SAVINGS IN 2040*

Reduce electricity use in 2040 by nearly **5.5 TWh** which is **18** % of current regional electricity use contributing to total cumulative savings of **56 TWh** by then.

These electricity savings are worth **736 Million US\$** a year in 2040 leading to a total cumulative saving on electricity bills of nearly **8 Billion US\$** by that year.

The reduction in electricity demand could prevent the need to build **2 power plants [500MW each]** in the region by 2040.

The CO₂ emissions saved from these reductions will be **1 million tonnes** per year by 2040 contributing **12 million tonnes** to savings over 17 years.

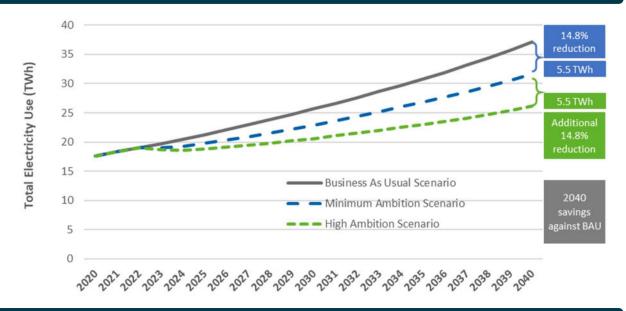


These emissions savings are equivalent to taking **nearly 0.6 million cars** off the road.

More stringent polices in the high ambition scenario increase annual savings to **11 TWh** by 2040 increasing total cumulative savings to **107 TWh** by then.

ELECTRICTY SAVINGS OVER TIME TO 2040*

^{*} denotes savings are from the Minimum Ambition Scenario



THE POTENTIAL FOR MORE BENEFITS

THE MORE AMBITIOUS THE POLICY, THE MORE ELECTRICITY SAVINGS ARE

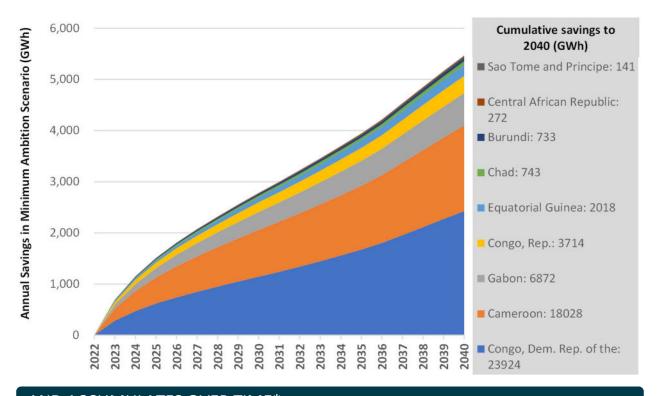
BRINGING EXTRA SAVINGS OVER TIME IN BOTH CO2 AND ELECTRICITY BILLS

AND OTHER SOCIETAL BENEFITS IN 2040 BY SCENARIO**

Increased grid connection to between 200 - 400 thousand households

Reduced cumulative direct GHG emissions by nearly 4 Million tonnes

^{**} denotes a range of savings are shown from the Minimum Ambition to the High Ambition Scenario U4E Regional Savings Assessment for the Central African Region, July 2024

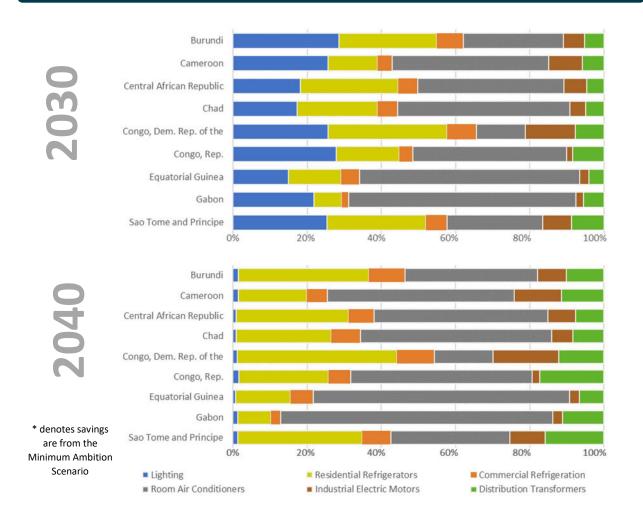


DETAILED BENEFITS BY COUNTRY

THE SHARE OF ELECTRICTY SAVINGS TO 2040 VARIES BY COUNTRY*

AND ACCUMULATES OVER TIME*

	Annual savings in 2040			Cumulative savings by 2040			
Denotes Savings for Minimum Ambition Scenario	Electricity	Electricity Bills	Emissions	Electricity	Electricity Bills	Emissions	
Country	(GWh)	(Million US\$)	(Thousand tonnes)	(GWh)	(Million US\$)	(Thousand tonnes)	
Burundi	71	4	58	733	37	602	
Cameroon	1,680	285	379	18,000	3,060	4,070	
Central African Republic	28	3	19	272	29	185	
Chad	74	16	50	743	157	504	
Congo, Dem. Rep. of the	2,420	242	9	23,900	2,390	85	
Congo, Rep.	338	27	151	3,710	301	1,650	
Equatorial Guinea	210	37	142	2,020	351	1,370	
Gabon	630	120	326	6,870	1,310	3,550	
Sao Tome and Principe	14	3	11	141	26	109	



DETAILED BENEFITS BY PRODUCT

THE SHARE OF SAVINGS IN 2030 ALSO VARIES BY PRODUCT*

	Annual (A) Cumulative (C)	Lighting	Residential Refrigerators	Commercial Refrigeration	Room Air Conditioners	Industrial Electric Motors	Distribution Transformers
Electricity = 12-5	Α	691	584	149	918	254	187
(GWh)	С	5,920	2,470	643	4,030	1,090	745
Electricity Bills	Α	93	70	70	142	32	24
(Million US\$)	С	794	298	298	626	139	97
CO ₂ emissions (Thousand tonnes)	Α	142	83	83	295	29	36
	С	1,210	353	353	1,300	129	141

AND THOSE ANNUAL SAVING SHARES VARY BY COUNTRY AND OVER TIME*

INPUT ASSUMPTIONS FOR EACH PRODUCT

GENERAL PRODUCT ASSUMPTIONS

	Unit Energy Consumption (UEC: kWh/y) or Efficiency Level (Eff.)								
Product		Business As Usual		Minimum Ambition Scenario		High Ambition Scenario	Typical product/usage pattern assumed to be:		
₽ 0	GSL		15W CFL	15	10W LED	10	7W LED 7	800 lumen light bulb: 1,000 hrs/year	
Lighting (UEC)	Linear		36W T8	108	20W LED	60	16W LED 48	4 foot tube: 3,000 hrs/year	
Lig (C	HID		70W HPS	307	50W LED	219	40W LED 175	Poletop street light: 4,380hrs/year	
	Residential Refrigerators	220 247 122		123	2-door refrigerator freezer of average size 210 litres				
Cooling (UEC)	Commercial Refrigeration	(i)	3,861		3,454		2,601	A market-weighted average of retail display cabinets (both remote and integral), drinks cabinets, storage cabinets, ice-cream freezers, vending machines and scooping cabinets.	
	Room Air Conditioners	@ 1	3,011		2,049		1,503	A mix of 3.5 kW and 7 kW split units with a weighted-average cooling capacity of 5 kW	
nent (Industrial Electric Motors		IE0		IE2		IE3	3-phase induction motors used in the industrial sector	
Equipment (Eff.)	Distribution Transformers	(3)	See no	ote	Level 1		Level 2	Three-phase and single-phase liquid- filled and three-phase dry-type power distribution transformers	

Distribution transformers Note: it is assumed that distribution transformers have losses in line with those assumed in the CENELEC harmonization research for the development of the EU standards.

COUNTRY SPECIFIC PRODUCT ASSUMPTIONS

As shown below, some country assumptions vary from those listed above for a number of reasons:

Variations in climate zone lead to different assumptions on hours of use for Room Air Conditioners. This, in turn, leads to different UEC assumptions in the BAU scenario in all countries listed.

		Unit Energ	Unit Energy Consumption (kWh/year) or Efficiency Level				
Product	Country	Business As Usual	Minimum Ambition Scenario	High Ambition Scenario	Average capacity		
	Cameroon	4,219	2,786	2,022	5 kW		
Room Air	Central African Republic	4,219	2,786	2,022	5 kW		
Conditioners	Chad	3,500	2,406	1,776	5 kW		
	Equatorial Guinea	4,219	2,786	2,022	5 kW		
	Gabon	4,219	2,786	2,022	5 kW		

COUNTRY DATA AND METHODOLOGY

COUNTRY DATA

ELECTRICITY MARKET

Country	Population (million)	GDP Per Capita (US\$)	Electrifi- cation Level	CO ₂ Emissions factor (kg/kWh)	Residential Electricity Tariff (US\$/kWh)	Transmission and Distribution loss factor
Burundi	12.3	248	11.2%	0.62	0.05	25.0%
Cameroon	27.2	1,587	66.1%	0.20	0.17	11.1%
Central African Republic	4.9	508	17.5%	0.62	0.11	9.2%
Chad	16.9	673	8.9%	0.62	0.21	9.2%
Congo, Dem. Rep. of the	92.4	581	22.3%	0.00	0.10	15.1%
Congo, Rep.	5.7	1,905	50.9%	0.25	0.08	44.5%
Equatorial Guinea	1.4	7,213	67.4%	0.62	0.17	9.2%
Gabon	2.3	6,952	91.1%	0.37	0.19	27.8%
Sao Tome and Principe	0.2	2,284	83.5%	0.62	0.18	19.8%

METHODOLOGY

The analysis uses the UNEP-U4E's Country Savings Assessment Models to estimate the impacts of implementing policies that improve the energy efficiency of each product analysed. Details are available on request but, in summary:

- The cooling analyses for refrigerators, commercial refrigeration and air conditioners use a bottom-up stock model approach combined with market data on typical product performance. Future growth is projected forwards based on established relationships between ownership and other known macroeconomic indicators.
- The lighting analysis uses a bottom-up stock model with market data on typical products to estimate current light demand. This is projected forwards in line with IEA estimates of future buildings electricity use. It is then used with an estimate of future average efficacy to calculate electricity consumption. This efficacy is based on assumptions about future trends in lamp switching and product efficacy in different scenarios.
- The equipment models are both top-down estimates. Motors electricity use is based on its typical relationship to industrial GDP, while distribution transformers are based on the typical capacity required for a total national electricity demand. Electricity use is shared between several typical products and applications based on market data. In both cases, the improvement in average stock efficiency is based on end-of-life stock turnover and new sales.

The savings potential in each scenario assumes Minimum Energy Performance Standards (MEPS) are introduced in 2022 at two different levels of ambition (minimum and high) as shown in the Typical Product Assumptions table above.

Further details of the modelling approach and assumptions are available on the <u>U4E website</u>. (https://united4efficiency.org/). For more information contact: unep-u4e@un.org

