

INTRODUCTION

This Regional Savings Assessment report provides a summary of the benefits attained from improved energy efficiency and climate friendly lighting, cooling appliances, and equipment for the North African Region. A market transformation can be obtained through measures such as Minimum Energy Performance Standards (MEPS); product labelling; market monitoring and verification; and financial incentives. For each product, the analysis considers three different scenarios:

- Business As Usual: Assumes that no actions are introduced and that the efficiency of products in the market continues to develop in line with historical trends in the absence of regulation.
- Minimum Ambition: In which MEPS are introduced in line with the basic requirements of the United Nations Environment Programme (UNEP) United for Efficiency (U4E) Model Regulation Guidelines.
- High Ambition: In which more stringent MEPS are implemented in line with the highest levels proposed in the guidelines.

This analysis covers the following countries: Algeria, Egypt, Libya, Mauritania, Morocco and Tunisia. Individual country overview reports comprising savings details for lighting, cooling and equipment can be found on the UNEP U4E website.

CONTENTS	
Page 1	Introduction
Page 2	Overview of benefits
Page 3	The potential for more benefits
Page 4	Detailed benefits by country
Page 5	Detailed benefits by product
Page 6	Input assumptions for each product
Page 7	Country data and methodology

1 The assumptions for each of these scenarios in each country are detailed on p6 of this report.

Department for Environment Food & Rural Affairs

OVERVIEW OF BENEFITS

ANNUAL SAVINGS IN 2040*

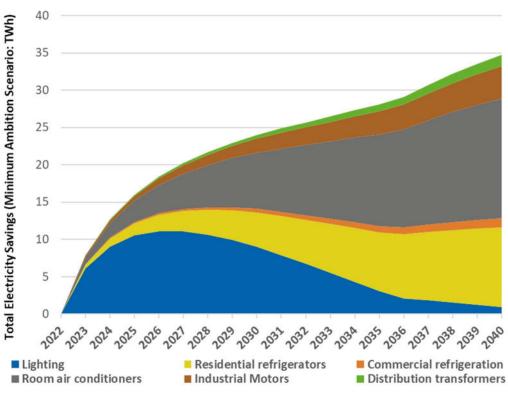
		Reduce electricity use in 2040 by 35 TWh which is 8.6 % of current electricity use contributing to total cumulative savings of 437 TWh by then.
4	T	These electricity savings are worth 3.2 Billion US\$ a year in 2040 leading to a

savings are worth 3.2 Billion US\$ a year in 2040 leading to a total cumulative saving on electricity bills of **39.7 Billion US\$** by that year.

EG

The reduction in electricity demand could prevent the need to build about 16 power plants [500MW each] in the region by 2040.

The CO₂ emissions saved from these reductions will be nearly 26 million tonnes per year by 2040 contributing to 340 million tonnes of savings over 17 years.

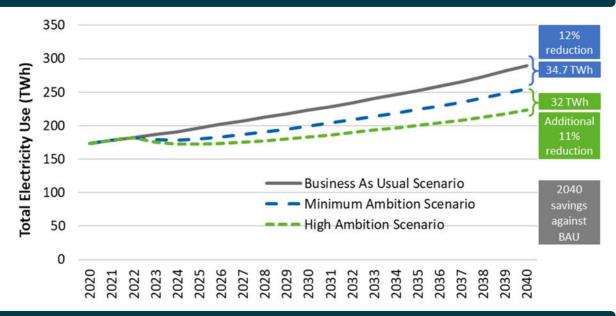


These emissions savings are equivalent to taking nearly 189 million cars off the road.

More stringent polices in the high ambition scenario increase annual savings to 67 TWh by 2040 increasing total cumulative savings to 765 TWh by then.

ELECTRICTY SAVINGS OVER TIME TO 2040*

^{*} denotes savings are from the Minimum Ambition Scenario


69

THE POTENTIAL FOR MORE BENEFITS

THE MORE AMBITIOUS THE POLICY, THE MORE ELECTRICITY SAVINGS ARE

BRINGING EXTRA SAVINGS OVER TIME IN BOTH CO2 AND ELECTRICITY BILLS

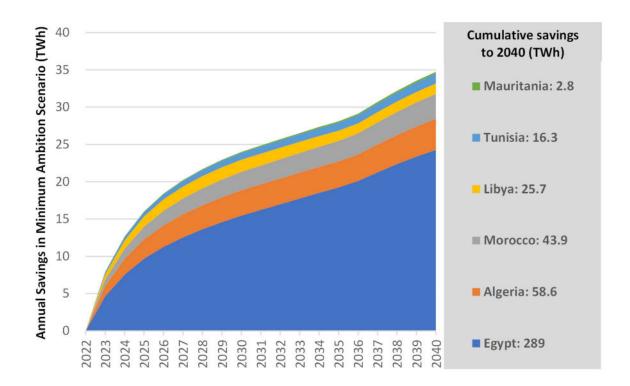
AND OTHER SOCIETAL BENEFITS IN 2040 BY SCENARIO**

Increased grid connection to between 0.8 – 1.5 Million households

Reduced cumulative direct GHG emissions by **33 Million tonnes**

** denotes a range of savings are shown from the Minimum Ambition to the High Ambition Scenario

U4E Regional Savings Assessment for the North African Region, September 2023



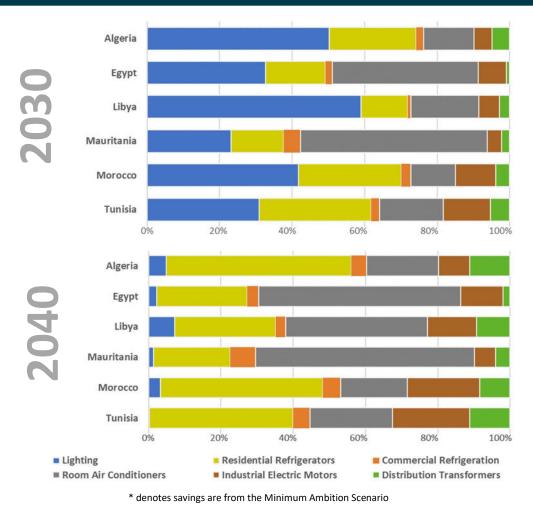
DETAILED BENEFITS BY COUNTRY

THE SHARE OF ELECTRICTY SAVINGS TO 2040 VARIES BY COUNTRY*

AND ACCUMULATES OVER TIME*

	Annı	ual savings in	2040	Cumulative savings by 2040			
	Electricity	Electricity Bills	emissions	Electricity	Electricity Bills	emissions	
Country	(GWh)	(Million US\$)	(Thousand tonnes)	(GWh)	(Million US\$)	(Thousand tonnes)	
Algeria	4,160	88	2,910	58,600	1,230	41,000	
Egypt	24,300	2,350	14,500	289,000	28,100	173,000	
Libya	1,410	178	3,800	25,700	3,240	69,400	
Mauritania	253	45	172	2,820	497	1,910	
Morocco	3,340	415	3,260	43,900	5,440	42,700	
Tunisia	1,310	101	895	16,300	1,250	11,100	

* denotes savings are from the Minimum Ambition Scenario



DETAILED BENEFITS BY PRODUCT

THE SHARE OF SAVINGS IN 2030 ALSO VARIES BY PRODUCT*

	Annual (A) Cumulative (C)	Lighting	Residential Refrigerators	Commercial Refrigeration	Room Air Conditioners	Industrial Electric Motors	Distribution Transformers
Electricity = 12-5	A	9,060	4,570	479	7,540	1,850	499
Electricity (GWh)	С	77,600	19,900	2,090	34,000	8,190	2,050
Electricity Bills	А	802	403	403	716	175	39
(Million US\$) ∎€	С	6,870	1,760	1,760	3,220	770	160
CO ₂ emissions	А	8,040	3,550	3,550	5,350	1,440	453
(Thousand tonnes)	С	68,900	15,500	15,500	24,200	6,350	1,870

AND THOSE ANNUAL SAVING SHARES VARY BY COUNTRY AND OVER TIME*

INPUT ASSUMPTIONS FOR EACH PRODUCT

GENERAL PRODUCT ASSUMPTIONS

Product		Business As		umption (UEC: kWh/y) Minimum Ambition Scenario) or Efficiency Lev High Ambition Scenario		
<u>в</u> (GSL		15W CFL	15	10W LED	10	7W LED 7	800 lumen light bulb: 1,000 hrs/year
Lighting (UEC)	Linear		36W T8	108	20W LED	60	16W LED 48	4 foot tube: 3,000 hrs/year
, Li	HID		70W HPS	307	50W LED	219	40W LED 175	Poletop street light: 4,380hrs/year
	Residential Refrigerators	0	471		278		139	2-door refrigerator freezer of average size 330 litres
Cooling (UEC)	Commercial Refrigeration	4 040 3 601			2,687	A market-weighted average of retail display cabinets (both remote and integral), storage cabinets, ice-cream freezers, vending machines and scooping cabinets.		
	Room Air Conditioners		766		526		386	A mix of 3.5 kW and 7 kW split units with a weighted-average cooling capacity of 5 kW
nent .)	Industrial Electric Motors	0	IEO		IE2		IE3	3-phase induction motors used in the industrial sector
Equipment (Eff.)	Distribution Transformers		See no		Level 1		Level 2	Three-phase and single-phase liquid- filled and three-phase dry-type power distribution transformers

Distribution transformers Note: it is assumed that distribution transformers have losses in line with those assumed in the CENELEC harmonization research for the development of the EU standards.

COUNTRY SPECIFIC PRODUCT ASSUMPTIONS

As shown below, some country assumptions vary from those listed above for several reasons:

0

1-Local market data provides a more accurate basis for the assumptions used in the BAU scenario for Residential Refrigerators and the average capacity assumed in Mauritania is much lesser than the normal refrigerator-freezer capacity hence having an improved energy performance.

2-Variations in climate zone lead to different assumptions on hours of use for Room Air Conditioners. This, in turn, leads to different UEC assumptions in the BAU scenario in all countries listed.

			Unit Energy C			
Product		Country	Business	Minimum Ambition	High Ambition	Average
			As Usual	Scenario	Scenario	capacity
Residential	0	Mauritania	330	247	123	210
Refrigerators	U			247		litres
		Egypt	2,517	1,829	1,375	5.0 kW
Room Air		Libya	2,517	1,829	1,375	5.0 kW
Conditioners		Mauritania	3,500	2,406	1,776	5.0 kW
		Tunisia	1,431	964	695	5.0 kW

COUNTRY DATA AND METHODOLOGY

COUNTRY DATA			ELECTRICITY MARKET				
	Population (million)	GDP Per Capita (US\$)	Electrifi- cation Level	CO ₂ Emissions factor (kg/kWh)	Residential Electricity Tariff (US\$/kWh)	Transmission and Distribution loss factor	
Algeria	44.6	3,392	99.9%	0.58	0.02	17.1%	
Egypt	104.3	3,697	100.0%	0.53	0.10	11.0%	
Libya	7.0	3,797	70.5%	0.82	0.13	69.7%	
Mauritania	4.8	1,750	48.1%	0.62	0.18	9.2%	
Morocco	37.3	3,176	100.0%	0.83	0.12	14.7%	
Tunisia	11.9	3,667	100.0%	0.58	0.08	14.8%	

METHODOLOGY

The analysis uses the UNEP-U4E's Country Savings Assessment Models to estimate the impacts of implementing policies that improve the energy efficiency of each product analysed. Details are available on request but, in summary:

- The cooling analyses for refrigerators, commercial refrigeration and air conditioners use a bottom-up stock model approach combined with market data on typical product performance. Future growth is projected forwards based on established relationships between ownership and other known macroeconomic indicators.
- The lighting analysis uses a bottom-up stock model with market data on typical products to estimate current light demand. This is projected forwards in line with IEA estimates of future buildings electricity use. It is then used with an estimate of future average efficacy to calculate electricity consumption. This efficacy is based on assumptions about future trends in lamp switching and product efficacy in different scenarios.
- The equipment models are both top-down estimates. Motors electricity use is based on its typical relationship to industrial GDP, while distribution transformers are based on the typical capacity required for a total national electricity demand. Electricity use is shared between several typical products and applications based on market data. In both cases, the improvement in average stock efficiency is based on end-of-life stock turnover and new sales.

The savings potential in each scenario assumes Minimum Energy Performance Standards (MEPS) are introduced in 2022 at two different levels of ambition (minimum and high) as shown in the Typical Product Assumptions table above.

Further details of the modelling approach and assumptions are available on the <u>U4E website</u>. For more information contact: unep-u4e@un.org

