

Presentation and discussion on proposed MEPS for Air Conditioners

Saikiran Kasamsetty, UNEP-U4E

4 October 2023 National Capacity Building Workshop

Content

- Model Regulation Guidelines on Air conditioners
- > Existing air conditioner MEPS in the region
- Global Air conditioner MEPS trends
- Products Scope
- Standard performance tests and climatic considerations
- Refrigerant regulations
- Energy Labelling -Product Information
- Summary of MEPS in the region
- Open discussion

Summary of U4E Model Regulation Guidelines for Air Conditioners

Scope and product categories

MEPS & performance labelling requirements

Test methods and efficiency metrics

Refrigerant requirements

Adopted from the U4E Model Regulation Guidelines

- Air conditioners, Ductless single-split, Self-contained, Portable types
- O Largely aligned with international best practices (split & self-contained)

Ductless Split & Self-contained

-) ISO 5151 & 16358
- CSPF (cooling-only ACs)

Portable

- ISO 18326
- O EER (cooling-only ACs)

Ductless Split

GWP 750 or lessODP 0

Self-contained & Portable

- C GWP 150 or less
-) ODP 0

Existing Room Air conditioner MEPS in the region (1)

Regional SADC MEPS

Minimum CSPF Requirements for Air Conditioners

Category	CSPF (CONSIDERATION 2024)	CSPF (CONSIDERATION 2027 and beyond)		
CC≤ 4.5 kW	4.50	6.10		
4.5 kW < CC ≤ 9.5 kW	4.20	5.10		
9.5 kW < CC ≤ 16.0 kW	3.80	4.50		
Outdoor Temperature Bin Hours	Table 7 (Table 3 in ISO 16358-1:2013)			

Minimum Requirements for EER of Portable Air Conditioners

Туре	EER
All	3.10

Existing Room Air conditioner MEPS in the region (2)

Regional ECOWAS MEPS

Type of air conditioners	EER	
All AC with capacity up to 20 kW	EER ≥ 2.8	

The fixed speed units approximately translate to 3 CSPF

MEPS in Ghana

MEPS in Nigeria (Proposed)

Category	MEPS (AEER)
CC≤ 4 kW	3.66
4 kW < CC ≤ 10 kW	3.2 (3.4 CSPF)
10 kW < CC ≤ 39.0 kW	3.1
39 kW < CC ≤ 65.0 kW	3

Energy class	All sizes and types except portable air conditioners	Portable Air Conditioners	
5-Star (Most efficient)	SEER ≥ 7.40	EER ≥ 4.20	
4-Star	6.60 ≤ SEER < 7.40	3.80 ≤ EER < 4.20	
3-Star	5.80 ≤ SEER < 6.60	3.40 ≤ EER < 3.80	
2-Star	5.10 ≤ SEER < 5.80	3.10 ≤ EER < 3.40	
1-Star	4.40 ≤ SEER < 5.10	2.90 ≤ EER < 3.10	

RAC– Minimum Energy Performance Requirements Global Trends

The Model Regulation Guidelines suggest requirements to be consistent with the market transition expected from technology and policy improvements in major and emerging economies.

Inefficient products can't meet these levels, and there are stretch tiers for labels.

See the Model Regulation Guidelines Supporting Information for more details.

Scope of Products – Room Air conditioning appliances

Single Split

Window/ selfcontained

Portable

Scope of Products – Room Air conditioning appliances

	Covered		Not covered
		•	Rated cooling output > 16 kW
•	Electrical single-phase	•	Water-cooled ACs, water-source
•	Non-ducted single-split		HPs
•	Self-contained	•	Multi-split ACs and HPs
•	Portable	•	Ducted equipment
•	Rated cooling output ≤ 16 kW	•	Non-Vapor compression
			technologies

ACs: air conditioners; HPs: heat pumps

Terms, Test Standards and Metrics

• Terms and definitions are harmonized with those in the reference standards.

	Testing/Rating Standards	Metric
Ductless split & Self-contained	 ISO 16358: 2013 ISO 5151: 2017 	• CSPF (AC)
Portable	• ISO 18326: 2018 + Amd 1: 2021	• EER (AC)

CSPF: cooling seasonal performance factor; HSPF: heating seasonal performance factor; APF: annual performance factor EER: energy efficiency ratio; COP: coefficient of performance

RAC– Energy Performance Grade Requirements

The high-efficiency levels represent approximately 30-60 percent of the efficiency improvement that is possible in energy-efficient technologies globally, but similar to or less than the efficiency levels of best available technologies.

	Climate Group]		
	(Temperature Bin Hours)	Grade	Rated Cooling Capacity ≤ 4.5 kW	4.5 kW < Rated Cooling Capacity ≤ 9.5 kW	9.5 kW < Rated Cooling Capacity ≤ 16.0 kW		Primary Climate	Therr
	Group 1	High Efficiency	8.00 ≤ CSPF	7.60 ≤ CSPF	7.10 ≤ CSPF		Group	
	(ISO 16358-1:	Intermediate	7.10 ≤ CSPF < 8.00	6.40 ≤ CSPF < 7.60	5.80 ≤ CSPF < 7.10	1		Extremely
	2013)	Low Efficiency	6.10 ≤ CSPF < 7.10	5.10 ≤ CSPF < 6.40	4.50 ≤ CSPF < 5.80		Group 1	Very Hot
ſ		High Efficiency	7.40 ≤ CSPF	7.00 ≤ CSPF	6.60 ≤ CSPF			Hot
	(Model	Intermediate	6 60 < CSPE < 7.40	6.00 < CSPE < 7.00	5 50 < CSPE < 6 60			Warm
	Regulation)		0.00 ≤ C3FF < 7.40	0.00 2 C3FF < 7.00	5.50 2 C3FF < 0.00		Group 2	Extremely
		Low Efficiency	5.70 ≤ CSPF < 6.60	4.90 ≤ CSPF < 6.00	4.30 ≤ CSPF < 5.50		Group 2	Very Hot
	1A	High Efficiency	7.00 ≤ CSPF	6.60 ≤ CSPF	6.20 ≤ CSPF			Mixed
	(Model	Intermediate	6.20 ≤ CSPF < 7.00	5.70 ≤ CSPF < 6.60	$5.20 \leq \text{CSPF} < 6.20$			Cool
	Regulation)	Low Efficiency	5.40 ≤ CSPF < 6.20	4.70 ≤ CSPF < 5.70	4.20 ≤ CSPF < 5.20		Group 3	Cold
	24	High Efficiency	7.30 ≤ CSPF	6.90 ≤ CSPF	6.50 ≤ CSPF			Very Cold
	(Model	Intermediate	6.50 ≤ CSPF < 7.30	5.90 ≤ CSPF < 6.90	5.40 ≤ CSPF < 6.50			Subarctic
	Regulation)	Low Efficiency	5.60 ≤ CSPF < 6.50	4.80 ≤ CSPF < 5.90	4.30 ≤ CSPF < 5.40		^a For cooling er climate group 2	nergy efficier 2 refers to IS
	3A	High Efficiency	7.00 ≤ CSPF	6.60 ≤ CSPF	6.20 ≤ CSPF		^b According to A	ASHRAE clim
	(Model	Intermediate	6.20 ≤ CSPF < 7.00	5.70 ≤ CSPF < 6.60	5.20 ≤ CSPF < 6.20			
	Regulation)	Low Efficiency	5.40 ≤ CSPF < 6.20	4.70 ≤ CSPF < 4.70	4.20 ≤ CSPF < 5.20			

Table 13: Labeling Requirements for Air Conditioners in Group 1 Countries

Primary	Secondary Climate Group ^b				
Climate Group ^a	Thermal	Humid	Dry	Marine	
	Extremely Hot	0A (Extremely Hot- Humid)			
Group 1	Very Hot	1A (Very Hot-Humid)			
	Hot	2A (Hot-Humid)	2B (Hot-Dry)		
	Warm	3A (Warm-Humid)	3B (Warm-Dry)	3C (Warm-Marine)	
Group 2	Extremely Hot		0B (Extremely Hot-Dry)		
Group 2	Very Hot		1B (Very Hot-Dry)		
	Mixed	4A (Mixed-Humid)	4B (Mixed-Dry)		
	Cool	5A (Cool-Humid)	5B (Cool-Dry)		
Group 3	Cold	6A (Cold-Humid)	6B (Cold-Dry)		
	Very Cold		7		
	Subarctic/Arctic				

^a For cooling energy efficiency calculation, primary climate group 1 and 3 refer to ISO 16358-1: 2013, and primary climate group 2 refers to ISO 16358-1: 2013/Amd 1:2019.

According to ASHRAE climate zone definitions available at ANSI/ASHRAE Standard 169-2013.

Global Air conditioner Trends: Overview

Global AC Market

> The global RAC market and policies are amid transition toward energy-efficient and sustainable solutions. Variable-speed (inverter) room ACs

•Source: Updated from Park et al. (2021) Harmonizing Energy-Efficiency Standards for Room Air Conditioners in Southeast Asia, and JRAIA (2018) World AC Demand

Test Requirements for Cooling (ISO 16358)

Operating condition		Fixed	Two-stage	Multi-stage	Variable
Full capacity and power input	Standard Temperature	Required	Required	Required	Required
Half capacity and power input	Outdoor DB 35°C / WB 24°C Indoor DB 27°C / WB 19°C	_a	-	Default ^c	Required
Minimum capacity and power input		-	Default ^c	-	-
Full capacity and power input	Low Temperature Outdoor DB 29°C / WB 19°C Indoor DB 27°C / WB 19°C	Default ^b	Default ^b	Default ^b	Default ^b
Half capacity and power input		-	-	Required	Default ^b
Minimum capacity and power input		-	Required	-	-

'-' represents Not applicable or Not considered.

Performance at the lower temperature shall be calculated by using predetermined equations as below: Full Capacity(29°C) = FullCapacity(35°C) × 1.077; Full Power input(29°C) = Full Power input(35°C) × 0.914 Half Capacity(29°C) = Half Capacity(35°C) × 1.077; Half Power input(29°C) = Half Power input(35°C) × 0.914 Performance at the standard temperature shall be calculated by using predetermined equations as below: Half Capacity(35°C) = Half Capacity(29°C) ÷ 1.077; Half Power input(35°C) = Half Power input(35°C) ÷ 0.914 Min Capacity(35°C) = Min Capacity(29°C) ÷ 1.077; Min Power input(35°C) = Min Power input(35°C) ÷ 0.914

- For fixed-speed units, determine CSPF
 by using only one set of test data at
 full-capacity operation at 35°C and use
 another set of data points at 29°C
 calculated by predetermined equations
- This results in a linear relationship with EER, i.e., CSPF = 1.062 × EER with the ISO reference temperature bin hours.
- For variable-speed units, determine
 CSPF while reducing compliance costs
 by using two sets of test data at fulland half-capacity operation at 35°C and another set of data points at 29°C
 calculated by predetermined equations, without considering a minimumcapacity operation.

Cooling Seasonal Performance Factor (CSPF)

RAC– Refrigerant Requirements

air-conditioners and dehumidifiers

Refrigerant GWP values refer to those specified in the IPCC's Fourth Assessment Report on which the GWPs of HCFCs and HFCs listed in Annex C and Annex F of the Montreal Protocol are based. The GWP values of refrigerants not included in the IPCC fourth assessment can be based on the latest IPCC assessment report.

Category	GWP	ODP
Self-Contained & Portable	150	0
Ductless Split	750	0

All units shall comply with standard ISO 5149 or IEC 60335-2-40:2018, a subsequent revision, or a nationally-modified edition of ISO 5149 or IEC 60335-2-40.

ISO 5149: Refrigerating Systems And Heat Pumps - Safety And Environmental Requirements

IEC 60335-2-40: Household and similar electrical appliances - Safety - Part 2-40: Particular requirements for electrical heat pumps,

United for Efficiency United for Efficiency

RAC– Label Information of the Product

All representations of energy performance shall indicate that the performance rating is based on the measurement according to [test standard name], an indicative value, and not representative of actual annual energy consumption in all situations.

Air Conditioners

- 1) Model name / serial number
- 2) Type of unit [ductless split, self-contained, or portable]
- 3) Country where the product was manufactured
- 4) Rated cooling (and heating, if applicable) capacity in kW
- 5) Rated maximum power consumption in kW
- 6) Rated performance grade
- Rated energy efficiency in [CSPF, APF, EER, or COP], and yearly electricity consumption in kWh
- 8) Refrigerant designation in accordance with [ISO 817 or ASHRAE 34], including ODP and GWP.

Sample for regional (ECOWAS) EE label

Summary of MEPS in the region

MEPS level (CSPF)	SADC	ECOWAS	Ghana	Nigeria	The Gambia
Current/Planned	4.5	3	3.4	4.3	3
Future	6.1		4		

The findings from Market Assessment report shall reinforce the MEPS and the respective tiers

Open discussion

Contact TRANSFORMING MARKETS TO ENERGY-EFFICIENT PRODUCTS

 \bigcirc

EMAIL

unep-u4e@un.org

united4efficiency.org