

Distribution Transformers (DT) – Enhancing Energy Efficiency & Reliability through Performance-based Refurbishment Contract – A Case

Manas Kundu ECREEE, U4E Interactive Online Seminar / Workshop, 13th July 2021

Legacy DTs improvement at DISCOM

Loss Reduction

Total Technical Losses reduction

Reliability Improvement

Reducing DT Failure rates

kVA Capacity Enhancement

Increasing kVA capacity of DTs to allow higher % loading

No choice except repairing failed DT to serve our customers

Reasons For High Technical Losses

No Load losses	Full Load losses
1) High Flux density (Tesla > 1.5) at design stage of DT manufacturing	1) High current density during design stage of DT manufacturing (1.4-1.5 Amp/mm ² for AI and 3 Amp/mm ² for Cu)
2) Bad quality of core with improper coating and high thickness	2) Replacement of original coils with derated (smaller size) coils during repairs
3) Successive degradation because of loss of core material during repairs	3) Replacement of electrolytic grade coils (conductors) with commercial grade coils
4) Reduction in no. of turns during refurbishment or repairs	

How To Reduce Loss Levels In DT

Measures	No Load Loss	Load Loss	Cost
Decreasing No Load Loss			
Use Low loss core material	Lower	No Change	Higher
Decrease flux density by 1. Increasing Core Cross section area 2. Decreasing Volts/Turn	Lower	Higher	Higher
Decrease flux path length by decreasing conductor Cross section	Lower	Higher	Lower
Decreasing Load Loss			
Use low loss conductor material	No Change	Lower	Higher
Decrease current density by increasing conductor cross section	Higher	Lower	Higher
Decrease current path length by 1. Decreasing Core cross area 2. Increasing Volts /Turn	Higher Higher	Lower Lower	Lower Higher

Issues And Challenges In Current Refurbishment Process

Slide 1 of 2

Awareness: Conventional refurbishment is the prevalent practice with DISCOM; performance-based one is in nascent stage among utilities

Regulatory: Approval of capex proposals (including DT) without impact evaluation of earlier approved capex (i.e. whether the asset last to its full lifetime and so on), dilutes the prudency.

Cost Accounting Mechanism in DISCOM: Current system not designed to capture recurring cost (i.e. repair cost) on a particular DT across its lifetime, to track the OPEX and total cost. This can enable both Licensee & Regulator toa raise flag when the costs are beyond limits. Having such system will improve the procurement expenditure (i.e. Capex) by reform of the procurement conditions.

Commercial: Conventional refurbishment appears less expensive at first sight, however it is concealing the total cost of ownership/operation of legacy DTs

Contractual: Contractual challenges with most existing refurbishment agreements includes

- Short warranty period i.e. minimal control on performance
- No checks & balances on reliability of DT performance post refurbishment (for outside warranty DT's)
- No mechanism/contractual obligation for measuring the energy performance of DT post refurbishment other than the prevailing acceptance tests
- 5 | Distribution Transformers Energy Efficiency & Reliability

Issues and Challenges In Current Refurbishment Process

Slide 2 of 2

Monitoring Mechanism:

- Absence of strong monitoring mechanism to narrow down on DT failure reasons
- Absence of continuous energy performance monitoring of DT's, to ascertain the quality of functioning of DT

Repair Ecosystem:

- Apprehension from DISCOM about higher cost of performance-based refurbishment (without weighing the long-term commercial benefits)
- Apprehension from repairer about potential changes in legacy refurbishment system/process, as current system is not outcome/performance driven
- Absence of capacity/awareness with repairers/DISCOM to have transition from conventional repair to performance-based refurbishment

PERFORMANCE IMPROVEMENT REFURBISHMENT

7 | Distribution Transformers – Energy Efficiency & Reliability

What is Performance Based DT Refurbishment?

Focuses on technical loss reduction and key asset (DT) upgradation

Achieves through winding compensation

- Replacing AI with Cu winding
- Both HT and LT windings or only one of them can be replaced

Winding compensation allows scalable refurbishment methodology

Changing different size core will be a challenge

Strong Service Level Agreement (SLAs) driven with performance-based incentives to the repairer

 Repairer can be incentivized over rate contract, depending on the technical losses reduction over baseline losses or capacity enhancement

Can be applied selectively on DTs that yield preferred payback period

- Guideline can be prepared to undertake it on DTs with higher technical losses only
- Pre- refurbishment testing of No load and Full load losses should be mandated to evaluate performance-based refurbishment applicability

Overview of Process of Performance based Refurbishment of DT

Performance based refurbishment shall be carried out of failed/damaged/legacy distribution transformer and also the distribution transformer with high total losses and consistent overloading to improve its performance including Reducing technical losses i.e. Total Loss (No load loss + Load loss); Improving reliability and reducing downtime (i.e. Mean Time Between Failures); and Increasing kVA capacity of the distribution transformer

Pre-Refurbishment

- Identification of Transformer for Refurbishment
 - Based on nature of transformers like failed/damaged, high losses or consistent overloading as determined by Discoms.
 - Based on Transformer Rating as identified by DISCOMS.
- Inspection of Transformer
 - Initial Inspection at site
 - Joint internal inspection at repairer's place of repair.
 - Inspection at different stages of repair.
- Estimate Approving Authority
- Pre-Refurbishment testing and baseline (AS-IS) measurement of transformer characteristics.
 - Routine Test
 - Type Test

Special Test

9 | Distribution Transformers – Energy Efficiency & Reliability

Refurbishment

Main steps involved

- 1. Removal of old core and windings from the transformer to be repaired.
- 2. Stacking of new core laminations (steel material) tightly to reduce air gap between laminations
- 3. Placing LV and HV windings (coil material) as per required specifications and assembling of transformer
- 4. Oven drying of the assembled transformer to remove moisture
- 5. Placing of oven dried transformer in the tank and final assembling
- Drying of active parts
- Painting
- Sealing of Transformer

Post- Refurbishment

- Testing of transformer after refurbishment
 - Routine test
 - Type Test
 - Special Test
- Performance improvement after refurbishment
- Permissible loss level of transformer after refurbishment
- Permissible Temperature rise level of transformers after refurbishment
- Transportation
- Erection and commissioning of transformer

Methodology

Pre- refurbishment Testing, Execution and Post- refurbishment Testing at MTRU; Independent Testing

PILOT: 200KVA DT, MPPKVVCL

Solution & Results, Cost Benefit Analysis

11 | Distribution Transformers – Energy Efficiency & Reliability

Performance Improvement Repair Solution and Results

Key Design Parameters	Unit	Utility Specs	Baseline Pre-repair (at MTRU)	Actual Post-repair (at ERDA)	% Change from Base-Line
Capacity	kVA	200	200	200	
Year of Manufacturing			2013		
LV Winding Material			DPC AI	DPC Aluminium	
# of LV Turns	#		42	42	
HV Winding Material			DPC AI	DPC Copper	
# of HV Turns	#		1848	1848	
No Load Loss	Watts	500 (+15 % IS Tol.) = 575	652	652	0%
Full Load Loss	Watts	3000 (+15% IS Tol.) =3450	3450	2377	-31%
Impedance	%	4.5	-	4.2	
Total Winding Weight	Kg		100.5	178	

This also gave an insight into Hybrid Design in DT for better reliability and efficiency at an optimised cost Сл

Refurbishment or 'Active Repair' provides good cost economic option to Discom to upgrade legacy DTs asset with performance (measured in terms of Total Loss) equivalent to a level of EE as per IS 1180

Cost Benefit Analysis				
Total Units Saved (kWh/year)	9,399			
Avg. Revenue (Rs./kWh)	6.25 (8 Cents)			
Total Cost for Active Repair (INR)	90,290 (1200 USD)			
Total Cost for Conventional Repair (INR)	19,973 (270 USD)			
Incremental Cost (INR)	70,317 (930 USD)			
Simple Payback Period including financing charges (years)	1.29			

POTENTIAL BUSINESS MODEL

14 | Distribution Transformers – Energy Efficiency & Reliability

A Possible Business Model

15 | Distribution Transformers – Energy Efficiency & Reliability

Active Repaired DTs

Benefits from Performance Based Repair and Stakeholders Alignment

Benefits to Utility

- Improvement in efficiency due to reduction in technical losses
- Reduction in failure rate of DTs
- Improvement in asset
 management practices
- Reduction in O&M expenses thereby improvement in financial health
- Capex optimization by opting for R&M of DT in place of procuring new DT thereby reducing tariff impact

Benefits to end Consumers

- Improvement in power quality and reliable supply
- Reduction in tariff

Benefits to the DT Repairer/ Manufacturer/ Service provider

 Opportunity to do regular business and get added value through performance improvement during repair

& Re

Thank You

manas.kundu@copperalliance.org

mayur.karmarkar@copperalliance.org

