Lesotho

A summary of the benefits attained from improved energy efficiency through the implementation of Minimum Energy Performance Standards at two levels of ambition (minimum and high). More detailed reports for lighting, cooling and equipment can be downloaded from the United Nations Environment Programme (UNEP) United For Efficiency (U4E) website.

ANNUAL SAVINGS IN 2030*

Reduce electricity use by over **56 GWh** which is **7.1%** of current national electricity use

Save electricity worth **5.9 Million US$** equivalent to over **2 Power Plants [5MW each]**

Reduce electricity CO₂ emissions by over **39 Thousand tonnes** equivalent to **22 Thousand Passenger Cars**

ELECTRICITY SAVINGS OVER TIME*

* Denotes savings are from the Minimum Ambition Scenario.

U4E COUNTRY ASSESSMENT, SEPTEMBER 2019
AND EVEN MORE BENEFITS

THE MORE AMBITIOUS THE REGULATION, THE MORE SAVINGS ARE POSSIBLE

MEET GLOBAL CLIMATE GOALS BY SIGNIFICANTLY DECREASED EMISSIONS

OTHER BENEFITS ACHIEVED IN 2030*

- Increased grid connection to 28 Thousand households
- Reduced direct GHG emissions by 4 Thousand tonnes

* Denotes savings are from the Minimum Ambition Scenario.
Detailed Benefits

Annual Savings in 2030 and 2040*

<table>
<thead>
<tr>
<th></th>
<th>2030</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (GWh)</td>
<td>40</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>11</td>
</tr>
<tr>
<td>Electricity Bills (Thousand US$)</td>
<td>4.2</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>740</td>
<td>1,200</td>
</tr>
<tr>
<td>CO2 Emissions (Thousand tonnes)</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Cumulative Savings by 2030 and 2040*

<table>
<thead>
<tr>
<th></th>
<th>2030</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (GWh)</td>
<td>490</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>140</td>
</tr>
<tr>
<td>Electricity Bills (Million US$)</td>
<td>51</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>14</td>
</tr>
<tr>
<td>CO2 Emissions (Thousand tonnes)</td>
<td>340</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>97</td>
</tr>
</tbody>
</table>

Contribution to Cumulative Electricity Use by 2040

- **Lighting**
- **Residential Refrigerators**
- **Room Air Conditioners**
- **Industrial Electric Motors**
- **Distribution Transformers**

Denotes savings are from the Minimum Ambition Scenario.
Country Data and Input Assumptions

GENERAL INFORMATION
- **Population**: 2.23 Million
- **GDP per capita**: 1,324 US$
- **Electrification level**: 34.5%
- **CO2 Emission Factor**: 0.64 kg / kWh

ELECTRICITY MARKET
- **Residential Electricity tariff**: 0.11 US$ / kWh
- **Transmission and distribution loss factor**: 9.2%

ASSUMPTIONS

<table>
<thead>
<tr>
<th>Product</th>
<th>Unit Energy Consumption (kWh/year) or Efficiency Level</th>
<th>Type of Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSL</td>
<td>15W CFL 108 10W LED 60 7W LED 48</td>
<td>800 lumen light bulb: 1,000 hrs/year 4 foot tube: 3,000 hrs/year Poletop street light: 4,380 hrs/year</td>
</tr>
<tr>
<td>Linear HID</td>
<td>36W T8 307 20W LED 219</td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Refrigerators</td>
<td>340 286 143</td>
<td>2-door refrigerator freezer of average size 210 liters</td>
</tr>
<tr>
<td>Room Air Conditioners</td>
<td>818 889 543</td>
<td>A mix of 3.5 kW and 7 kW split units with a weighted-average cooling capacity of 5 kW</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Electric Motors (IEC level)</td>
<td>IE0 IE2 IE3</td>
<td>3-phase induction motors used in the industrial sector</td>
</tr>
<tr>
<td>Distribution Transformers (Model regulation level)</td>
<td>See note Level 1 Level 2</td>
<td>Three-phase and single-phase liquid-filled and three-phase dry-type power distribution transformers</td>
</tr>
</tbody>
</table>

Further details of the modelling approach and assumptions are available on the U4E website. For more information contact: U4E@un.org

METHODOLOGY

The analysis uses the UNEP-U4E’s Country Savings Assessment Models to estimate the impacts of implementing policies that improve the energy efficiency of each product analysed. The savings potential in each scenario assumes Minimum Energy Performance Standards (MEPS) are introduced in 2020 at two different levels of ambition (minimum and high) as shown above.

ASSUMPTIONS AND DATA SOURCES

- Market size is based on data from industry partners, the UN COMTRADE database and market penetration forecasts generated by U4E Country Savings Assessment Models using data on population, climate, income and other macroeconomic indicators as detailed below.
- Population (2018 and future forecasts) comes from the UN Population Division.
- GDP per capita data (2018) comes from the World Bank with future growth forecasts derived from the IPCC’s SSP3 scenario.
- Cooling Degree Days are based on average monthly temperatures from weatherbase.com, degreedays.net or given by wunderground.com.
- Residential electricity tariffs are based on IEA data.
- Transmission and distribution loss factor is a regional average calculated from electricity production and consumption data published by the IEA.
- Electrification levels come from the IEA’s Word Energy Outlook 2018 and the World Bank.
- CO2 emission factors come from the IEA and the Institute of Global Environmental Strategies (IGES) and are assumed constant in future years.
- Product typical characteristics are based on analysis from the UNEP-U4E Model Regulation Guidelines and other data from UNEP-U4E industry partners and technical experts including the US Lawrence Berkeley National Laboratory (LBNL), the International Copper Association (ICA) and GIZ.
- The approach of calculating the potential direct emissions saving of refrigerators and air conditioners is based on expert input from GIZ and LBNL.
- Additional to the above sources, a questionnaire was used to gather data from country officials.
- In a small number of instances, additional data was obtained from internet research or by using proxy data from similar markets.

Further details of the modelling approach and assumptions are available on the U4E website. For more information contact: U4E@un.org