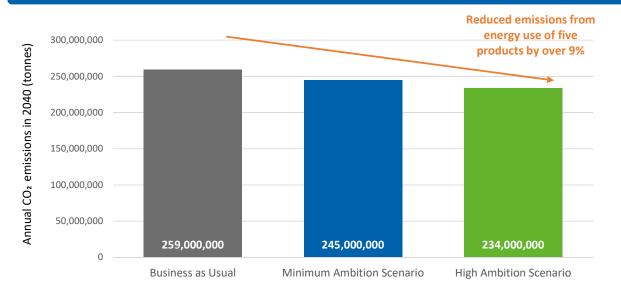

	Korea	, Repub	olic of	0	United for Efficiency		
	Lighting	Cool	ing	Equipment			
Product scope	All	Residential Refrigerators	Room Air Conditioners	Industrial Electric Motors	Distribution Transformers		

A summary of the benefits attained from improved energy efficiency through the implementation of Minimum Energy Performance Standards at two levels of ambition (minimum and high). More detailed reports for lighting, cooling and equipment can be downloaded from the United Nations Environment Programme (UNEP) United For Efficiency (U4E) website.

ANNUAL SAVINGS IN 2030*

ELECTRICITY SAVINGS OVER TIME*


AND EVEN MORE BENEFITS

THE MORE AMBITIOUS THE REGULATION, THE MORE SAVINGS ARE POSSIBLE

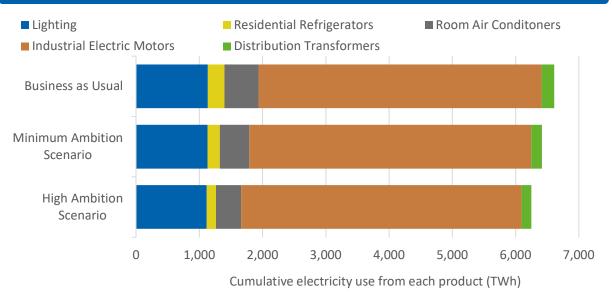
MEET GLOBAL CLIMATE GOALS BY SIGNIFICANTLY DECREASED EMISSIONS

OTHER BENEFITS ACHIEVED IN 2030*

Reduced direct GHG emissions by

4.7 Million tonnes

DETAILED BENEFITS



ANNUAL SAVINGS IN 2030 AND 2040*											
		Lighting		Cooling 💽				Equip	ment		
				Residential Refrigerators		Room Air Conditioners		Industrial Electric Motors		Distribution Transformers	
		2030	2040	2030	2040	2030	2040	2030	2040	2030	2040
4	Electricity (GWh)	430	36	3,200	6,000	3,200	7,100	1,100	2,100	1,300	2,900
<u>*</u>	Electricity Bills (Million US\$)	120	10	900	1,700	880	2,000	290	600	350	800
	CO2 Emissions (Thousand tonnes)	2,500	28	2,500	4,600	2,400	5,500	810	1,600	970	2,200

CUMULATIVE SAVINGS BY 2030 AND 2040*

		Lighting		Cooling 💽		Equipment		ment			
				Residential Refrigerators		Room Air Conditioners		Industrial Electric Motors		Distribution Transformers	
		2030	2040	2030	2040	2030	2040	2030	2040	2030	2040
4	Electricity (TWh)	3.6	6.0	17	67	17	71	5.8	22	6.7	28
_*	Electricity Bills (Billion US\$)	1.0	1.7	4.8	19	4.8	20	1.6	6.2	1.9	7.8
	CO2 Emissions (Million tonnes)	2.8	4.6	13	51	13	54	4.5	17	5.2	21

CONTRIBUTION TO CUMULATIVE ELECTRICITY USE BY 2040

Country Data and Input Assumptions

GENERAL INFORMATION Population 51 Million GDP per capita 31,363 US\$

100.0%

0.74 kg / kWh

ELECTRICITY MARKET

Residential Electricity tariff 0.28 US\$ / kWh

Transmission and distribution loss factor

3.3%

ASSUMPTIONS

Electrification level

CO2 Emission Factor

Product		Unit En Busines Usua	s As	onsumption (l Minimum A Scenar	mbition	r) or Efficiency High Amb Scenar	oition	Type of Product			
Lighting		GSL Linear HID	15W CFL 36W T8 70W HPS	15 108 307	10W LED 20W LED 50W LED	10 60 219	7W LED 16W LED 40W LED	7 48 175	800 lumen light bulb: 1,000 hrs/year 4 foot tube: 3,000 hrs/year Poletop street light: 4,380hrs/year		
Cooling		Residential Refrigerators	437		307		154		2-door refrigerator freezer of average size 270 liters		
Coo		Room Air Conditioners	546		561		359		A mix of 3.5 kW and 7 kW split units with a weighted-average cooling capacity of 3.9 kW		
Equipment		Industrial Electric Motors (IEC level)	IE3		(IE3+IE4	4)/2	IE4		3-phase induction motors used in the industrial sector		
Equip		Distribution Transformers (Model regulation level)	See note		Level	1	Level 2		Three-phase and single-phase liquid- filled and three-phase dry-type power distribution transformers		

Lighting Note: Republic of Korea has MEPS for all products covered in the Minimum Ambition Scenario so T5 lamps are also phased out in that scenario for this analysis.

Distribution transformers Note: it is assumed that distribution transformers have losses in line with those assumed in the CENELEC harmonization research for the development of the EU standards.

METHODOLOGY

The analysis uses the UNEP-U4E's Country Savings Assessment Models to estimate the impacts of implementing policies that improve the energy efficiency of each product analysed. The savings potential in each scenario assumes Minimum Energy Performance Standards (MEPS) are introduced in 2020 at two different levels of ambition (minimum and high) as shown above.

ASSUMPTIONS AND DATA SOURCES

Market size is based on data from industry partners, the UN COMTRADE database and market penetration forecasts generated by U4E Country Savings Assessment Models using data on population, climate, income and other macroeconomic indicators as detailed below.

Population (2018 and future forecasts) comes from the UN Population Division.

GDP per capita data (2018) comes from the World Bank with future growth forecasts derived from the IPCC's SSP3 scenario.

Cooling Degree Days are based on average monthly temperatures from weatherbase.com, degreedays.net or given by wunderground.com.

Current total electricity consumption comes from the World Bank and the U.S. Energy Information Administration (EIA) with future forecasts derived from the International Energy Agency's (IEA) World Energy Outlook 2018.

Residential electricity tariffs are based on IEA data.

Transmission and distribution loss factor is a regional average calculated from electricity production and consumption data published by the IEA.

Electrification levels come from the IEA's Word Energy Outlook 2018 and the World Bank.

CO2 emission factors come from the IEA and the Institute of Global Environmental Strategies (IGES) and are assumed constant in future years.

Product typical characteristics are based on analysis from the UNEP-U4E Model Regulation Guidelines and other data from UNEP-U4E industry partners and technical experts including the US Lawrence Berkeley National Laboratory (LBNL), the International Copper Association (ICA) and GIZ.

The approach of calculating the potential direct emissions saving of refrigerators and air conditioners is based on expert input from GIZ and LBNL.

Additional to the above sources, a questionnaire was used to gather data from country officials.

In a small number of instances, additional data was obtained from internet research or by using proxy data from similar markets.

Further details of the modelling approach and assumptions are available on the U4E website. For more information contact: U4E@un.org

