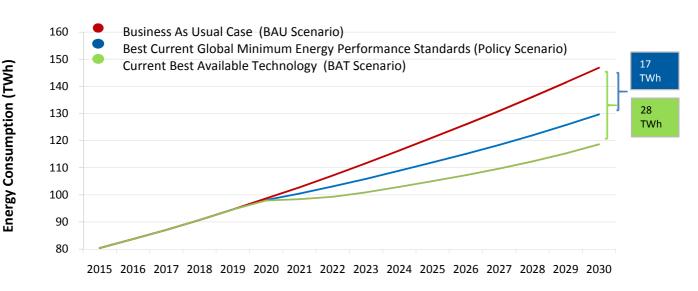


Egypt



Energy efficiency benefits from lighting, residential refrigerators, room air conditioners, power and distribution transformers and industrial electric motors with the implementation of globally benchmarked minimum energy performance standards.

ANNUAL SAVIN	GS IN 2030	
	Reduce electricity use	
	→ by over 17 TWh	
	→ 7.2% of future national electricity use	
Y Y Y	Save electricity worth 830 Million USD	
ăăă 	equivalent to 8 Power Plants [500MW]	
CO ₂	Reduce CO ₂ emissions by 8 Million Tonnes	
	equivalent to 5 Million Passenger Cars	

EVEN GREATER SAVINGS POSSIBLE WITH BEST AVAILABLE TECHNOLOGY

THE PATHWAY TO ENERGY EFFICIENCY

ANNUAL SAVINGS IN 2025 AND 2030											
		Lighting			dential Room Air erators Conditioners		Transformers		Industrial Electric Motors		
		2025	2030	2025	2030	2025	2030	2025	2030	2025	2030
	Electricity (GWh)	1,710.8	2,197.8	1,900.5	3,962.6	687.3	1,266.4	3,607.4	6,904.5	1,253.0	2,820.1
ååå	Electricity Bills (million US\$)	78.7	101.1	87.4	182.3	31.6	58.3	165.9	317.6	75.2	169.2
CO ₂	CO2 Emissions (thousand tonnes)	839.6	1,078.7	932.7	1,944.8	337.3	621.6	1,652.2	3,162.3	615.0	1,384.1

CUMULATIVE SAVINGS (2020 - 2030)							
		Lighting	Residential Refrigerators	Room Air Conditioners	Transformers	Industrial Electric Motors	
•	Electricity (TWh)	16.3	21.3	7.3	40.2	14.5	
ååå	Electricity Bills (million US\$)	747.5	979.2	337.2	1,850.9	868.4	
CO ₂	CO2 Emissions (million tonnes)	8.0	10.5	3.6	18.4	7.1	
OTHER BENEEITS IN 2030							

OTHER BENEFITS IN 2030							
*	Direct GHG emissions reduced by	→	3 Million Tonnes				
 ååå	Reduced electricity subsidies by	→	770 Million USD				

ENERGY EFFICIENCY STRATEGY AND NATIONALLY DETERMINED CONTRIBUTION

Country Nationally Determined Contribution (NDC): To achieve "high CO2 mitigation levels" through measures including phasing out energy subsidies within 3-5 years and, potentially, a national carbon market. Also aims to use renewable and nuclear power sources.

Country Specific Data and Input Assumptions

For Egypt

GENERAL INFORMATION				
Population	83.4 million			
GDP per capita	3,436 US\$			
Electrification level	100%			
CO2 Emission Factor	0.458 kg / kWh			

ELECTRICITY MARKET				
Residential Electricity tariff	0.046 US\$ / kWh			
Industrial Electricity tariff	0.060 US\$ / kWh			
Transmission and	6.68%			
distribution loss factor				

ASSUMPTIONS

Product		Unit Energy Co	onsumption (kWh/yea	Tune of Dradust	
		BAU	BAU Policy Scenario BAT		Type of Product
4	Lighting	65.7	15.3	8.8	Low incandescent Lamp,3h/day; 14W CFL; 8W LED
	Residential Refrigerators	500	231	167	2-door top-mount Average size 350 liters
	Room Air Conditioners	1 897	1,547	1,014	Split unit with 3.5 kW cooling capacity
<u>#</u>	Transformers	N/A	SEAD Tier3	SEAD Tier5	three-phase and single-phase liquid- filled and three-phase dry-type power and distribution transformers
	Industrial Electric Motors	IE1/IE0	IE3	IE4	3-phase induction motors Ranging from: 0.75 - 7.5 kW; 7.5 - 75 kW;75 - 375 kW

METHODOLOGY

The analysis uses CLASP's and Lawrence Berkeley National Laboratory's Policy Analysis Modeling System (PAMS) to forecast the impacts from implementing policies that improve the energy efficiency of new household air conditioners and refrigerators. For lighting, electric motors, and power and distribution transformers individual - models were developed, taking into account country level data, expected GDP growth, and industrialization levels. The savings potential assumes minimum energy performance standards (MEPS) are implemented in 2020 at level equivalent to the present day (2015) best global MEPS that are currently implemented. The graph on page two also shows the savings potential that is possible with the implementation of MEPS in 2020 at level equivalent to the present day best available technology (BAT).

ASSUMPTIONS AND DATA SOURCES

- Population and GDP per capita data (2014) comes from the World Bank.
- Electrification levels come from the International Energy Agency (IEA).
- Market size was determined by data provided by industry partners; UN Comtrade database; household penetration forecasts generated by PAMS from population, climate, and macroeconomic indicators.
- Future electricity consumption was calculated using current consumption figures provided by the IEA and the U.S. Energy Information Administration (EIA).
- Baseline price, unit energy consumption (UEC), appliance lifetime were provided by country representatives (when available); industry partners; and Lawrence Berkeley National Laboratory. The business-as-usual scenario assumes a 1 per cent annual improvement in UEC.
- Electricity tariffs were provided by the IEA; and Internet research.
- Transmission and distribution loss factor is a regional average calculated from electricity production and consumption data published by the IEA.
- CO2 emission factor came from the IEA and extrapolations were made for countries lacking data.
- Consumer discount rate was derived from the Human Development Index, United Nations Development Programme (2012).
- The approach of calculating the potential direct emission saving of refrigerators and air conditioners: the typical current mix of refrigerants fillings, leakage rates and end of life emissions in the BAU compared to the best alternative with natural refrigerants (mostly R290 for splits and R600a for domestic refrigerators).
- Additional to the above sources, a questionnaire was used to gather data from country officials.

