

LM-79-08, LM-80-08, TM-21-11

Xin Hongzheng

UNEP Collaborating Centre for Energy Efficient Lighting

- The relationship of the three standards
 - Different applications
 - Different scope
 - The relationship
- Introduction to LM-79-08
- Introduction to LM-80-08
- Introduction to TM-21-11

The relationship of the three standards

Different applications

- LM-79: SSL Performance testing method
- LM-80:LED Measuring Lumen Maintenance of LED Light Sources
- TM-21: LED Projecting Long Term Lumen Maintenance of LED Light Sources

The relationship of the three standards

Different Scopes:

- LM-79: Solid State Lighting products
- LM-80: LED light sources
- TM-21: LED light sources

The relationship of the three standards

Relationship:

- Test (LM-79)- Burning-lifetime (LM-80)-Test (LM-79).....;
- The luminous maintenance is tested according to LM-79 at different stages;
- Once having enough luminous maintenance data, taking into TM-21 model for calculation;

 Approved Method: Electrical and Photometric Measurements of Solid-State Lighting Products

Broad scope:

- The sample can work when connecting to the power supplier;
- No need more electronic circuit , no need external heat sink;

-could be luminaire or light source

- Many testing items, many test methods
- Electrical parameters ()
- Photometric parameters (luminous flux, light distribution)

-Integrating sphere system(...;...)

-Gonio-photometry system(...)

- Colorimetric parameters
 - Integrating sphere system(...)
 - Gonio-photometry system(...)*

- Contents
- 1.0 Introduction
 - -1.1 Scope
 - -1.2 General
 - -1.3 Nomenclature and Definitions
- 2.0 Ambient Conditions
 - -2.1 General
 - -2.2 Air Temperature
 - -2.3 Thermal Conditions for Mounting SSL Products
 - -2.4 Air Movement
- 3.0 Power Supply Characteristics
 - -3.1 Waveshape of AC power supply
 - -3.2 Voltage Regulation
- 4.0 Seasoning of SSL Product

- 5.0 Stabilization of SSL Product
- 6.0 Operating Orientation
- 7.0 Electrical Settings
- 8.0 Electrical Instrumentation
 - -8.1 Circuits
 - -8.2 Uncertainties
- 9.0 Test Methods for Total Luminous Flux measurement
 - -9.1 Integrating sphere with a spectroradiometer
 - -9.1.1 Integrating sphere
 - -9.1.2 Sphere geometry
 - -9.1.3 Principle of measurement
 - -9.1.4 Spectroradiometer
 - -9.1.5 Self-absorption correction
 - -9.1.6 Calibration

- 9.2 Integrating sphere with a photometer head (Sphere-photometer system
 - -9.2.1 Integrating sphere
 - -9.2.2 Sphere geometry
 - -9.2.3 Principle of measurement
 - -9.2.4 Photometer head
 - -9.2.5 Self-absorption correction
 - -9.2.6 Determination of f'1, and Spectral Mismatch Correction Factor
 - -9.2.7 Calibration
- 9.3 Goniophotometer
 - -9.3.1 Type of Goniometer
 - -9.3.2 Principle of Total Luminous Flux Measurement
 - -9.3.3 Scanning resolution
 - -9.3.4 Angle coverage
 - -9.3.5 Polarization
 - -9.3.6 Photometer head
 - -9.3.7 Calibration

- 10.0 Luminous Intensity Distribution
- 11.0 Luminous Efficacy
- 12.0 Test Methods for Color Characteristics of SSL Products
 - -12.1 Method using a sphere-spectroradiometer system
 - -12.2 Method using a spectroradiometer or colorimeter spatially scanned
 - -12.3 Spectroradiometer parameters impacting measured color characteristics
 - -12.4 Colorimetric calculations
 - -12.5 Spatial non-uniformity of chromaticity
- 13.0 Uncertainty statement
- 14.0 Test Report
- References
- Annex (Informative)

IES Approved Method for Measuring Lumen Maintenance of LED Light Sources

For LED engine, LED package, LED module Only consider the failure model of luminous maintenance Need external supports

- The choice of temperature testing point
- Three temperature testing points
- The key matters need to take care during the temperature control
- The requirements in humidity control
- The requirement of power supplier
- The time cycle of continuous burning
- The requirement of performance testing
- Interval of testing
- Total burning hours

Sampling rules, how many samples?

- 1.0 Scope
- 2.0 References
- 2.1 Normative References
- 2.2 Non-Normative References
- 3.0 Definitions
- 3.1 Measurement Units
- 3.2 LED Source
- 3.3 Lumen Maintenance
- 3.4 Lumen Maintenance Life
- 3.5 LED Source Failure
- 3.6 Rated Lumen Maintenance Life, (Lp)
- 3.7 Case Temperature, (Ts)

- 4.0 Ambient and Physical Conditions .
- 4.1 General
- 4.2 LED Unit Marking
- 4.3 Sample Selection
- 4.4 Environmental Conditions
- 4.4.1 Vibration
- 4.4.2 Temperature and Humidity
- 4.4.3 Airflow
- 4.4.4 Operating orientation and LED Unit Spacing
- 5.0 Electrical and Thermal Conditions
- 5.1 Input Voltage and Current
- 5.2 Line Voltage Waveshape
- 5.3 Input Current Regulation
- 5.4 Auxiliary Equipment including Drivers
- 5.5 Case Temperature

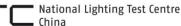
- 6.0 Test and Measurement Procedures
- 6.1 Instrumentation
- 6.2 Photometry Measurement
- 6.3 Photometry Measurement Temperature
- 7.0 Lumen Maintenance Testing Method for LED Light Sources
- 7.1 Lumen Maintenance Testing Duration and Interval
- 7.2 Operating Cycle
- 7.3 Recording Failures
- 7.4 Chromaticity
- 8.0 Test Report

Projecting Long Term Lumen Maintenance of LED Light Sources

Use the LM-80 data for calculation

Luminous maintenance

- Sample size and calculation data
- It is encourage to adopt short interval and long time data
- Two calculations:
 - -At the same burning conditions
 - -The temperature of the actual temperature testing point
- The calculation from the same burning conditions
 - -data collection and pre-processing
 - -calculation tool
 - -results
 - -same process at the different temperatures
- The calculation from the actual temperature testing point
 - actual temperature is between two temperatures getting from the data


- Scope
- Normative References
- Definitions
 - LED Light Source
 - DUT
 - Lumen Maintenance Life
- Test Data and Sample Size
 - Data to be Used
 - Sample Size Recommendation
 - Luminous Flux Data Collection

- Lumen Maintenance Life Projection
 - Method
 - Procedures
 - Normalization
 - Average
 - Data Used for Curve-fit
 - Curve-fit
 - Adjustment of Results
 - Notation for Lumen Maintenance Life
- Temperature Data Interpolation
 - Selection of Test Case Temperatures
 - Convert All Temperatures to Kelvins
 - Use the Arrhenius Equation to Calculate the Interpolate Lumen Maintenance Life
 - Applicability of the Arrhenius Equation
 - Limit for Extrapolation
- Report

